(also nonabelian homological algebra)
Context
Basic definitions
Stable homotopy theory notions
Constructions
Lemmas
Homology theories
Theorems
A curved dg-algebra is like a dg-algebra, but instead of the differential squaring to 0, it squares to the graded commutator with a fixed element of the algebra: its “curvature”.
This is like the covariant derivative on the sections of a vector bundle with connection satisfying , where is the curvature 2-form of the connection (valued, here, in fiber endomorphism)s.
Curved dg-algebras appear in the description of various TQFTs.
(…)
A basic exposition of the definition is in
For applications in derived categories of D-branes in Landau-Ginzburg models see
Dmitri Orlov, Derived Categories of Singularities and D-branes in Landau-Ginzburg models , (arXiv:math.ag/0503632)
Anatoly Preygel, Thom-Sebastiani and duality for matrix factorizations arXiv:1101.5834
An natural construction of curved dg-algebras as de Rham / Dolbeault complexes on a circle 2-bundle with connection is in
and with more details in section 2 of
An early use of curved dg-algebras can be found in a 1993 paper of Positselski:
Available at (https://www.mathnet.ru/links/e9c418f6c2cdbb10fafba78627743cdb/faa712.pdf)
Last revised on May 17, 2025 at 21:14:16. See the history of this page for a list of all contributions to it.